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Background: Increasing delay & power
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Logic and Memory modules are separated On-chip memory modules are volatile.

Many interconnections between modules

Wire delay dominates chip performance Power supply must be continuously
Global wires requires large drivers. applied in memory modules.

Delay: Long Power: Large Static power: Large ,




Nonvolatile logic-in-memory architecture

Logic-in-Memory Architecture (proposed in 1969):
Storage elements are distributed over a logic-circuit plane.

Magnetic Tunnel Junction
(MTJ) device
7

No volatility
I} MTJ | <Unlimited endurance
layer -Fast writability

P oMOS tMOS compatibility

YT | .3.p stack capability

J

@ Storage is nonvolatile:
(Leakage current is cut off))————Static power Is cut off.
@ MTJ devices are put o Chip area is reduced.
on the CMOS layer é §Wire delay is reduced.
@ Storage/logic are merged: Dynamic power is reduced.
(global-wire count is reduced) 4




Implementation of MTJ Device
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—Fabricated : [—].:
vl — (T ¢ B
roda LE Y
i | TH |
M3 M3
TH [ TH ] Metal ' ' ' '
M2 M2 ‘
oz s Layers‘ BE N
M1 M1 M1
c| Gate|c Gate | CMOS I l H4
Layer‘ 300nm

- — — D. Suzuki, et al., VLSI Circuit Symp. 2009
Substrate Diffusion

MTJ device stacked over MOS Plane Cross-sectional SEM image

ThHe area cost using MTJ device is small.



Use of Charge and Spin

© T Data is still kept
& when V,, is OFF
S (Nonvolatile)
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[Use of both charge and spin E> Realize no volatility and rich logic functionality]




Power-Gating Suitability
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NV logic-in-memory architecture
—) Power gating is performed without data backup/reload.




Nonvolatile Processor Architecture

GP-Logic: General-purpose logic
SP-Logic: Special-purpose logic
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= SP-Logic

d-step Nonvolatile Prokessor

v
lmnvolatile Field-Programmable w Nonvolatile Ternary Content-

Gate Array (FPGA) Addressable Memory (TCAM)
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Nonvolatile Field-Programmable Gate Array (FPGA)

-- Arbitrary logic functions are performed

NV LUT (Lookup Table) and programmed by FPGA
-- Power dissipation and hardware overhead

- O O | are two major issues.

-- NV storage elements are distributed
over the NV-FPGA (no external NVM).

— =

© Leakage current elimination
and short latency are possible.

NV device

@ How to design?

Nonvolatile logic-in-
memory architecture
Not required!
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Conventional nonvolatile FPGA

@ CMOS logic circuit requires
high-voltage input swing.

) "SAN. .
Il Combinational
l B logic Output

""" (SA: Sense Amplifier)
< i S - —
Low voltage High Voltage

How do we perform logic operation by using
low swing signal from MTJ device directly?
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MOS/MTJ-hybrid circuitry (Proposed)

L Current-mode logic (CML) I

© Logic operation is performed even low swing voltage by
using the small difference of the current value.

Combinational

logic
(Current-Mode)

< ’Eﬁ
Low voltage : High voltage

Device count is reduced to 28% with less
performance degradation.
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Operation example (XOR)

Logic operation in low swing voltage is performed
by using a MOS/MTJ-hybrid network.
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Test chip features

D. Suzuki, et al., VLSI Circuit Symposium, June 2009.

Fabricated 2-input LUT
| 0.14pum
MTJ/MOS

| Se tion” 1 HEOCeSS 1-Poly,

Transistor Tree 3-Metal
287um?2

50nm
x150nm

Area .

MTJ Size

TMR Ratio

Current

_ | Time
Standby Current

Write

10ns

4 MTJ devices are
stacked over MOS layer
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Measured waveforms (Basic operations)

P: Pre-Charge
E: Evaluate

PEPEUPEPE

Input B

Output Z |
Output-Z-

0.78V/div

L.

100ps/div



Immediate wakeup behavior

Active Standby Active

li- " " doied F . .

01'78V/d'v Immediate wakeup behavior

has also measured successfully.
50us/div
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Comparison of performances

Nonvolatile

| SRAM *1 PEposed
. 102 MOSs 29 MOSs
Device Counts + 8 MTJs + 4 MTJs
Area 702 um? 287um?

I Delay *3)| 140 ps 185 ps

Active

Power™) 26.7 uW 17.5 uW

Standby | Power 0 uW 0 uW

*1) W. Zhao, et al., Physica Status SOLIDI a Application and Materials Science, 205, 6,
1373/1377, May 2008.

*2) Estimation based on a 0.14um process

*3) HSPICE simulation based on a 0.14um MOS/MTJ-hybrid process
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Ternary Content-Addressable Memory (TCAM)

Input key: 0 1 0 0 1 1 0 Fully parallel
A 4 \ 4 \ 4 \ 4 maSkEd equallty
Search-line / Word-line driver search
2 2 2 42 2 /2 2

rorT— 2 BLl 1 l /" M——— } S — /" L OUTJ_ enanmanao -

o 7 BL. 1 1 0 0 0 ’ 1 X — = — 0 (Mismatch)
2|7 Bng CENCE | | | | | ouT; | .2

O [ 7 BLY “ 0 1 0 0 1 X X " — 1 (Match)

D 4+

= ‘ jtored words \ =

= — — — ouTH 3

o 72%’ 1 0 1 0 1 = X X F—— O — 0 (Mismatch)

Fully parallel search and fully parallel comparison can be done.
TCAM is a “functional memory.”
TCAM is the powerful data-search engine

useful for various applications such as database machine and virus checker in

network router

TCAM must be implemented more compactly with lower power dissipation.
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NV-TCAM Cell Function

Search Match
Stored data input Current result
: i comparison
B :(byb2)] S ML
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s NP
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care i 1 I, <1, (Match)
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CMOS-based TCAM cell circuit

Equality-detection

1-bit storage (ED) circuit 1-bit storage
ML= S A S A~ e~/ i

Vpp:; A
% 7 Leakage Leakage 7 J/
0 oA {’l /’,/ i &

W e T e W e & e T e TR

y »

® Transistor counts : 12 (ED:;4T, 2-bit storage;8T)
® nput/output wires : 8 (BL;2, WL;1, Vpp&Vss;2, SL;2, ML;1)
® Always supply the power : Many leakage current path

rHow to realize compact & cut off the leakage current ?‘]
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MOS/MTJ-hybrid TCAM cell circuit

S. Matsunaga, et al. Applied Physics Express (APEX), 2, 2, 023004, Feb. 2009.

2-bit storage
(MTJs)

SL'/WL+ SL/WL+

‘Merge storage into logic circuit : Compact (2T-2MTJ)
-Share wires : 4 (ML/BL, SL/WL, No-Vpp)
*3-D stack structure : Great reduction of circuit area

F Com;act & nvaoIatiI_e TCAM_ceII with MTJ de_vices ‘}

22




Power-Gating Scheme of Bit-Serial NV-TCAM
— S. Matsunaga, et al., JJAP 49 (2010) O4DM05 r

1st-bit search 2nd-bit search 3rd-bit search
1 1 1 Search word 17 1 1 Search word 17 1 1 Search word
e i WY s PN VN e
1 11 I - : 1 [} | [ \)_ - : : 11 11 [F ] \’_ i«
(I) —::_(T)___Ir-::_)é__:- SA>—. ACC P> Mismatch :,'_(T)_'_:_I':_(;)_-_r::_)rf-_:—l‘, __S__:, @» Mismatch ':_Q_-_P':_(f)_-_:—":_)ff-_'h‘, _i_‘, El—» Mismatch
OR1nr0H SA>— ACC > Mismatch : 10 n 1 n 0 :—ESA,\»— ACC > Mismatch : 1 0 n 1 n :—IISA,\»— ACC P Mismatch
— LR D et Lt Lt e ST Bk bl Yo LEE
OR Xn1H SA>— ACC > Mismatch : ) X n 1 n SA,\»— ACC|» Mismatch : {1 0 Rr X1 1 n SA,\»— ACC b Mismatch
— o e Aot Bl delidete N el dutiiods St
1 0+ XHSAHACCH Match : |1 :—O%X:—@—ACC—>Mi8matCh 11 H 0 R X HSA - ACC |+ Mismatch
e e e —'_|+ e e
1 —I1HO:—SA>-'ACC-> Match : .1 1R O +SA)ACC> Match :1H1:—0|-|SA>—ACC}—>Mismatch
. mepntlag ] ol e >_ olamn
11 X 1 HSA)JACCH Match i1 HXH 1 HSAYACC> Match i i1 nXH1HSA>ACCH Match
— o ik gl sl gl Pl e o
X 01 X H{SA){ACC Match : | X H 0 X HSA)MAGC»Mismatch | | X H 0 H X H SA -{ACG > Mismatch
R Y e Rt we Y todnmngTn T mzhlens
Xp1n0qSAACCH Match : 1 XH1h 0 ASAXACCP Match ::1Xn 10HSA C > Mismatch
s 8 S —>_ % e . 2 el —H—>_
X | X R 1 HsA Match : i X HXFH 1 Hsay{Acel> match X H X H1HsayAccl Match
TCAM cell in active mode N TCAM cell in standby mode Accumulator in active mode
'--+ (Static power is suppressed.)
S_A> Sensé amplifieriniactive mods =7y, Sense amplifier in standby mode

122y (Statlc power is suppressed.)

According to the word length of the TCAM,
the effectiveness of the standby-power reduction is increased.
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M cell circuit test chip

Chip features

| 0.14um CMOS/MTJ

’ Process

- i generator 1-Poly, 3-Metal

N in . g — =~
o MLSA Total area 29.4 um?

: A . 3.15 pm?

- froseeeeeee e TCAMcell size - (2.1 pm X 1.5 um) 3
- i:TCAM: i Ref. = =
" Focell i cell CeII structure : 2MOSs-2MTJs

a B e o MTJ size 50 nm X 200 nm

A L " i -

" Dynamic : TMR ratio 167 %

= current Average

& : comparator ; e 274 pA (tp =10 pus)
: F in write current

I MLSS Standby current 0A (Power off)

3 A CMOS-based TCAM cell with 12 transistors, whose cell size is 17.54 um?2 under a 0.18 um CMOS process,
has been reported.?) The size of the conventional TCAM cell can be estimated as 10.61 um?2 under a 0.14 um
CMOS process by scaling down. Thus, the size of the fabricated TCAM cell is reduced to 30 % compared to that
of the conventional one. Moreover, minimum size of the proposed TCAM cell can be considered as 1/6 of the

conventional one.

b) More high-speed write operatlon is possible with increase of write current. For example, with the average cuggnt

of 327 uA at 10 ns write.



Waveforms of equality-search operations

‘ P : Precharge phase E : Evaluate phase ‘

Search
data

Misma@ch

[ Bit-level equality-search is successfully demonstrated. ] 25




Waveforms of sleep/wake-up operations

Active Active * Active
P, _E, P, _E P
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[ Instant sle—ep/waké—up behavior is successfully demonstrated. ]
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Conclusions

ﬁ( Propose a MOS/MTJ-hybrid circuit (nonvolatile logic-in-
memory circuit using MTJ devices) style

iﬁ( Two kinds of typical applications with logic-in-memory
architecture; NV-LUT circuit and NV- TCAM

Compact and no static power dissipation
iﬁ( Confirm basic behavior with fabricated test chips
under an MTJ/CMOQOS process.
It could open an ultra-low-power logic-circuit paradigm

Future Prospects and Issues:
1. Establish the fabrication line
2. Establish the CAD tools
3. Explore the appropriate application fields
(Impact towards “Reliability Enhancement”)
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