Spintronic Devices for Nonvolatile VLSIs

<u>Hideo Ohno</u>

Center for Spintronics Integrated Systems, Tohoku University Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University WPI-Advanced Institute for Materials Research, Tohoku University Center for Innovative Integrated Electronic Systems, Tohoku University

Collaborators: T. Endoh, T. Hanyu, H. Sato, S. Fukami, S. Kanai, S. Ikeda, F. Matsukura and the CSIS team

Work supported by the FIRST Program from JSPS

and partly by R & D for Next-Generation Information Technology of MEXT

http://www.csis.tohoku.ac.jp/

Nonvolatile working memory is in need

CSIS CSIS CSIS CS	SIS CSIS	CSIS	CSIS CSIS		
Features of non-volatile for memory device	Flash	FRAM	Spin Device		
Access Speed	Δ	0	0		
Non destructive Read	sis Ocsis	Δ	sis Ocsis		
Write Endurance	×	Δ	0		
Scalability	0	Δ	Ο		
Operation Voltage	SIS _X CSIS	C Σ	SIS OCSIS		

System (Memory) Hierarchy

Magnetic tunnel junction based memory elements to counter dynamic and static power, and interconnection delay

H. Ohno et al., IEDM 2010 (invited)

RIECTOHOKU

Non-volatile CMOS VLSIs with spintronics

On 300 mm wafers

Magnetic Tunnel Junctions (MTJs)

Nonvolatile, fast, low voltage and high endurance

Switching Current I_{c0} and Energy Barrier $\Delta = E/k_B T$

Perpendicular MgO-CoFeB MTJ

Top electrode

(a) Cr/Au interface perpendicular Ru Та CoFeB anisotropy MgO CoFeB Та Ru **Bottom electrode** Та 5 nm $SiO_2/Si sub.$ S. Ikeda et al., Nature Mat. 9, 721 (2010)

Size dependence of I_{C0}

Size dependence of $\Delta = E/k_BT$

Nucleation diameter

- A linear relationship between $E/k_{\rm B}T$ and $t_{\rm rec}$
- The slope of 36 nm⁻¹ \Rightarrow $A_s^* \approx$ 19 pJ/m

H. Sato et al., IEEE Magn. Lett. 3, 3000204 (2012).

Domain patterns of CoFeB

300

Magneto-optical Kerr effect (MOKE) images after demagnetization

sample A (t = 1.1 nm), as-deposited

100 k

sample B (t = 1.3 nm), annealed at 350°C

T ≥ 100 K

- Domain walls moved smoothly
- Labyrinth patterns were formed

T ≤ 50 K

- Domain walls were strongly pinned
- Complex patterns were formed

200

M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).

Domain patterns of CoFeB

M. Yamanouchi et al, IEEE Magn. Lett., 2, 300304 (2011)

Double interface structure

H. Sato, et al., Appl. Phys. Lett. 101, 022414 (2012).

Double MgO

Double-MgO MTJ (DMTJ) annealed at $T_a = 350 \text{ °C}$

CoFe Ru Ru Та CoFe(B) Mnlr MgO CoFe(B MgO CoFe(B) CoEe(B) COF Mnlr MgO NiFe Та CoFe(B) Ru Ru 10 nm Та 5 nm CoFe

Mnlr

EELS element map(a) Co(b) Fe(c) B

H. D. Gan et al., Appl. Phys. Lett. 96 (2010) 192507.

Single MgO

H. Sato et al. Appl. Phys. Lett. 105, 062403 (2014)

Device size dependence of \varDelta

Dotted line reproduces the trend well Interface engineering to further enhance Δ

H. Sato *et al.*, *Appl. Phys. Lett.* **101**, 022414 (2012). H. Sato *et al.*, IEDM 2013, p. 3.2.1.

H. Sato et al. Appl. Phys. Lett. 105, 062403 (2014)

Demagnetization coefficient N

Reported properties of nano p-MTJs

							UNIVERSITY
	Material	Size (nm)	TMR ratio (%)	/ _{C0} or / _C (μΑ)	E/k _B T	Ref	
	CoFeB	40	124	49	43	[1]	
CSIS	CoFeB	17x40	100 (CIPT)	50		[2]	CSIS
0010	CoFeB	20	57	29	29	[3]	
	undisclosed	30	73	25	61	[4]	
CSIS	CoFeB	27	130	12	80	[5]	
				CS19	C 147		
	undisclosed	15		~0.6 V	~42	[6]	
CoFeB/Ta/		20	127	24	58	[7]	
	15	101	22	41	[7]		
CSI	C213 COLED	11	107	13	28	[7]	CSIS
-							

[1] S. Ikeda et al., Nature Mater. 9, 721 (2010).

[2] W. Kim et al., 2011 IEDM, p24.1.1

[3] M. Gajek et al, Appl. Phys. Lett. 100, 132408 (2012).

[4] E. Kitagawa et al., 2012 IEDM, p. 29.4.2.

[5] L. Thomas et al., J. Appl. Phys. 115, 172615 (2014).

[6] J. H. Kim et al., 2014 VLSI Tech., P.76.

[7] H. Sato et al., 2013 IEDM, p. 61., Appl. Phys. Lett. 2014

Interface anisotropy – junction size, K_i and Δ

Size dependence of ΔI_{C0}

Magnetization manipulation by

Magnetic field

write/read heads for HDD 1st generation MRAM

Spin current

http://www.hitachigst.com/

http://www.everspin.com/

Spin torque MRAM Spin torque oscillator Race-track memory

R. Takemura et al., VLSI Circ. Dig. p.84 (2009)

4Mb Arrav

Electric field

CSIS CSIS

CSIS

Switching Energy

Electric-field control of magnets

Ferromagnetic transition

Magnetization direction

Ferromagnetic semiconductor (In,Mn)As

Magnetization switching by anisotropy

Electric-field effects on metals

See also; FePt, FePd: M. Weisheit et al., Science (2007). Fe/Au: T. Maruyama et al., Nature Nanotechnology (2009).

Electrical switching of perpendicular CoFeB

S. Kanai et al., Appl. Phys. Lett. 101, 122403 (2012)

Electrical switching of perpendicular CoFeB

S. Kanai, et al., Appl. Phys. Lett. **103**, 072408 (2013)

See also Y. Shiota et al. *Nature Materials*, 2011 for ultrathin FeCo W. G. Wang et al. *Nature Materials* 2012 for electric-field assisted switching

Electrical switching plus STT

Remaining challenges

- e
- Switching probability
 - Pulse: shape and timing control

CSIS CSIS CSIS CSIS CSIS CSIS CSIS

Two and three terminal devices

Depinning probability of DW by ns pulses

Critical current density shows constant down to ~2 ns.
Error rate decreases above a threshold more steeply than MTJs.
S. Fukami, H.O. *et al.*, *Nat. Commun.* 4, 2293 (2013).

Whenever power consumption of LSI increased to hit a limit of heat dissipation, a paradigm shift in LSI technology has taken place by bringing in new technology.

Summary

Spintronics devices are an indispensable ingredient in developing CMOS VLSI with low power and high performance.

Two terminal device

- Size dependence of energy barrier of perpendicular CoFeB-MgO MTJ between 30 and 11 nm; size dependence of demagnetization.
- Size dependence of △/I_{C0} suggests additional reduction of dissipative path as size reduces.
 - Electric-field manipulation of magnetization

Three terminal device CSI

Depinning probability that determines error rate was explored and shown to follow a function steeper than that known for MTJs.