CoFeB/MgO based perpendicular magnetic tunnel junctions with stepped structure for symmetrizing different retention times of "0" and "1" information

Katsuya Miura^{1,2,3}

S. Ikeda^{1,2}, M. Yamanouchi¹, H. Sato¹, H. Yamamoto³,
K. Mizunuma², H. D. Gan¹, J. Hayakawa³, R. Koizumi²,
F. Matsukura^{1,2}, N. Kasai¹, and H. Ohno^{1,2}

RIE

¹Center for Spintronics Integrated Systems, Tohoku University ²Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University ³Central Research Laboratory, Hitachi, Ltd.

This work was supported by the FIRST Program of JSPS, and the Tohoku University GCOE Program.

Symposia on VLSI Technology and Circuits

Outline

- Background
- Issue of perpendicular magnetic tunnel junctions (p-MTJs)

Slide 1

- Proposal of p-MTJs with stepped structure
- Fabrication and characterization of stepped structure
- Cell area of stepped structure
- Proposal of self-alignment process
- Summarys csis csis csis csis

Background

Applications using MTJs as memory elements.

Advantages of perpendicular MTJs

 We successfully developed CoFeB/MgO based perpendicular MTJ (p-MTJ).

Requirements for applications
1. High TMR ratio
2. Low switching current
3. High thermal stability factor
4. Back-end-of-line compatibility

~	
51	Ļ

In-plane MTJ

p-MT_

S. Ikeda *et al.*, Nature Mater. **9**, 721 (2010). K. Miura *et al.*, Abstract for 55th MMM conference, HC-02, (2010).

Issue for p-MTJs

 Different stability between states storing "0" and "1" information.

Reduction of thermal stability

*A*₁ increases with increasing diameter of reference layer.

Objectives

- Symmetrizing different retention times of "0" and "1" information.
 - Development of p-MTJ with stepped structure for suppressing reduction of Δ_1 .
 - Verification of advantage of stepped structure over conventional structure.

Sample preparation

 Co₂₀Fe₆₀B₂₀ ferromagnetic layers and MgO tunnel barrier combination are used.

Stacked structure

Deposition RF magnetron sputtering @RT ➢ Gas pressure : Ar 0.1-0.4 Pa \blacktriangleright Cathodes :4" ϕ Fabrication EB and Photo lithography \succ Ar-ion milling Post annealing ➤ 300°C \rightarrow H=400 mT (perpendicular)

Two types of p-MTJs

• We fabricated two types of MTJs which have same feature size.

Method to determine H_s experimentally

 H_s can be determined from shift of hysteresis loop with respect to H=0.

H_s in two types of p-MTJs

 $H_{\rm s}$ can be reduced by using stepped structure.

13

22

RA ($\Omega\mu m^2$)

 $H_{\rm s}$ (mT)

13

5

Experimental and estimated H_s

Experimental results are roughly agreed with the calculation curve.

Slide 11

Method to determine Δ_0 and Δ_1

• We measured resistance as a function of magnetic field 100 times to obtain switching probability.

Δ_0 and Δ_1 in two types of p-MTJs

 Δ_0 and Δ_1 in stepped structure are almost equivalent.

Magnetic field (mT)

Magnetic field (mT)

SIS	CSIS	Conventional structure	Stepped structure
S.	Δ_0	71.2	72.9
	Δ_1	46.5	70.1

Retention time and Δ_1

 Retention time over 10 years is achieved by employing stepped structure.

Cell area of stepped structure

 Cell area of stepped structure we demonstrated is 0.09 μm² which corresponds to SRAM cell area at 32 nm technology node.

Cell area of stepped structure

 Cell area can be down to 0.04 μm² without degrading the retention time over 10 years, which corresponds to SRAM cell area at 20 nm technology node.

Slide 17

Summary

- Novel MTJ structure "stepped structure" is proposed.
- Different retention times of "0" and "1" information are symmetrized.
- The stepped structure achieves retention time over 10 years.
- The cell area of the stepped structure corresponds to that of SRAM at 20 nm technology node.
- Self-alignment process for reducing fabrication cost is also proposed.