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Background
• Applications using MTJs as memory elements.
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S. Matsunaga et al., Appl. Phys. Express 1, 091301 (2006).
R. Takemura et al., VLSI Circ. Dig. pp.84-85,  (2009)
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Advantages of perpendicular MTJs
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S. Ikeda et al., Nature Mater. 9, 721 (2010).
K. Miura et al., Abstract for 55th MMM conference, HC-02, (2010).
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Requirements for applications
1. High TMR ratio 
2. Low switching current
3. High thermal stability factor
4. Back-end-of-line compatibility

• We successfully developed CoFeB/MgO based 
perpendicular MTJ (p-MTJ). 

In-plane MTJ p-MTJ



Issue for p-MTJs

Slide 4

Parallel state
Low resistance

Anti-parallel state
High resistance 

Bit Information “0” Bit Information “1”

• Different stability between states storing “0” and 
“1” information.
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Reduction of thermal stability
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Objectives

• Symmetrizing different retention times of 
“0” and “1” information.
 Development of p-MTJ with stepped structure 

for suppressing reduction of ∆1. 
 Verification of advantage of stepped structure 

over conventional structure.
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Sample preparation
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Deposition
 RF magnetron sputtering @RT
 Gas pressure : Ar 0.1-0.4 Pa
 Cathodes :4”φ

Fabrication
 EB and Photo lithography
 Ar-ion milling

Post  annealing
 300oC
 H=400 mT (perpendicular)

Stacked structure
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• Co20Fe60B20 ferromagnetic layers and MgO tunnel 
barrier combination are used. 



Two types of p-MTJs
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• We fabricated two types of MTJs which have same 
feature size. 
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Method to determine Hs experimentally
• Hs can be determined from shift of hysteresis loop 

with respect to H=0.
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Hs in two types of p-MTJs
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Hs

Stepped structureConventional structure

Hs

Conventional structure Stepped structure

TMR ratio (%) 100 97

RA (Ωµm2) 13 13

Hs (mT) 22 5

• Hs can be reduced by using stepped structure.
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Experimental and estimated Hs
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• Experimental results are roughly agreed with the 
calculation curve. 



Method to determine ∆0 and ∆1
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• We measured resistance as a function of magnetic 
field 100 times to obtain switching probability.

τp = 1 s
τ0 = 1 ns

Typical R-H loops



∆0 and ∆1 in two types of p-MTJs
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• ∆0 and ∆1 in stepped structure are almost equivalent. 

Conventional structure Stepped structure

∆0 71.2 72.9

∆1 46.5 70.1

Stepped structureConventional structure
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∆

• Retention time over 10 years is achieved by 
employing stepped structure.

Retention time and ∆1
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Cell area of stepped structure
• Cell area of stepped structure we demonstrated is 

0.09 µm2 which corresponds to SRAM cell area at 32 
nm technology node. 
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Cell area of stepped structure
• Cell area can be down to 0.04 µm2 without degrading 

the retention time over 10 years, which corresponds 
to SRAM cell area at 20 nm technology node. 
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For reducing fabrication cost

1. Fabrication the 
free layer

• Additional masks are not necessary
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2. Deposition of 
side wall spacer

3. Etchback 4. Completion of 
stepped structure



Summary
• Novel MTJ structure “stepped structure” is 

proposed. 
• Different retention times of “0” and “1” information 

are symmetrized.
• The stepped structure achieves retention time over 

10 years. 
• The cell area of the stepped structure corresponds 

to that of SRAM at 20 nm technology node. 
• Self-alignment process for reducing fabrication cost 

is also proposed. 
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