Fully Parallel 6T-2MTJ Nonvolatile TCAM with Single-Transistor-Based Self Match-Line Discharge Control

Shoun Matsunaga^{1,2}, Akira Katsumata², Masanori Natsui^{1,2}, Shunsuke Fukami^{1,3}, Tetsuo Endoh^{1,2,4}, Hideo Ohno^{1,2}, and Takahiro Hanyu^{1,2}

¹ Center for Spintronics Integrated Systems, Tohoku University
 ² Research Institute of Electrical Communication, Tohoku University
 ³ NEC Corporation

⁴ Center for Interdisciplinary Research, Tohoku University

Acknowledgment:

This research is supported by the Japan Society for the Promotion of Science (JSPS) through its "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)."

Symposia on VLSI Technology and Circuits June 17, 2011.

Background & Purpose

Conclusions

- 6T-2MTJ-Based NV-TCAM Cell and Test Chip Fabrication
 - Design Example of Low-Power NV-TCAM Using Three-Level Segmented Match-Line Scheme

Background

TCAM (Ternary Content-Addressable Memory)

Fully Parallel equality-search <u>Applications:</u> Database, virus checker, network router, etc. <u>Demands:</u> Large capacity, Low-power consumption

Purpose : Realize a compact and low-power TCAM

Merits of MTJ-Based Nonvolatile Logic-in-Memory

CSIN Background & Purpose

Conclusions

- 6T-2MTJ-Based NV-TCAM Cell and Test Chip Fabrication
- Design Example of Low-Power NV-TCAM
 Using Three-Level Segmented Match-Line
 Scheme

It is desirable to realize a compact and nonvolatile TCAM cell.

Match-Line Voltage Swing 1-bit miss detection (worst case) Current into a Diode miss cell (exponential scale) Reversed Word current Hit Hit Hit **Reversed current** length from hit cells V_{CELL-H} V_{CELL-H} **V**_{CELL-H} (linear scale) V_{ML} V_{ML} V_{CELL-L} V_{CELL-H} VCELL-L ML voltage keeper (Weak inversion) logarithmic Miss scale

Sufficient ML voltage swing can be obtained even in longer word circuit.

Match-Line Voltage Swings (Simulated and Measured)

Chip Measurements

Basic behaviors of the fabricated MTJ device and NV-TCAM have been successfully confirmed.

Measured Waveforms of Instant-ON/OFF Voltages

Instant ON/OFF of the fabricated chip has been successfully confirmed.

CSIN Background & Purpose

Conclusions

- 6T-2MTJ-Based NV-TCAM Cell and Test Chip Fabrication CSIS CSIS CSIS CSIS CSIS
 - Design Example of Low-Power NV-TCAM Using Three-Level Segmented Match-Line Scheme

Performance Evaluations

Array structure CSIS		144-bit x 256-word
Cell activity [%]		2.8
Search energy [fJ/bit/search]		1.04 (Comparable to CMOS-based TCAM within a few fJ/bit/search)
Standby power [W]	Sleep mode	0 (@Power-OFF)
	Search mode	Negligible (@2.8% activity)
	Search mode	Negligible (@2.8% activiter of a 90nm CMOS technology @1

CSIN Background & Purpose

Conclusions

- 6T-2MTJ-Based NV-TCAM Cell and Test Chip CSIS Fabrication CSIS CSIS CSIS CSIS CSIS
- Design Example of Low-Power NV-TCAM
 Using Three-Level Segmented Match-Line
 Scheme

Conclusions

We have proposed and demonstrated 6T-2MTJ-based fully-parallel NV-TCAM.

Cell Circuit Techniques:

 Fewest transistor counts with nonvolatility
 Bit-parallel equality-search capability in a long word based on 1-transistor ML voltage keeper array

Word Circuit Techniques:

 Eliminate wasted cell activation based on three-level segmented match-line scheme
 → Negligible standby power under comparable search energy with CMOS-based TCAM