2011 Spintronics Workshop on LSI @ Kyoto, Japan, June 13, 2011

MTJ-Based Nonvolatile .ogic-in-Memory Architecture

Takahiro Hanyu

Center for Spintronics Integrated Systems, Tohoku University, JAPAN Laboratory for Brainware Systems, Research Institute of Electrical Communication, Tohoku University, JAPAN

Acknowledgement:

This work was supported by the project "Research and Development of Ultra-Low Power Spintronics-Based VLSIs"

under the FIRST program of JSPS.

Outline

Nonvolatile Logic-in-Memory Architecture Overview

NV GP-Logic: Nonvolatile-FPGA

NV SP-Logic: Nonvolatile-TCAM

Conclusions & Future Prospects

Background: Increasing delay & power

Nonvolatile logic-in-memory architecture

•<u>Logic-in-Memory Architecture</u> (proposed in 1969): Storage elements are distributed over a logic-circuit plane.

No volatility
Unlimited endurance
Fast writability
Scalability
CMOS compatibility
3-D stack capability

 Storage is nonvolatile: (Leakage current is cut off)
 MTJ devices are put on the <u>CMOS</u> layer
 Storage/logic are merged:
 Dynamic power is reduced.
 (global-wire count is reduced)

Implementation of MTJ Device

Power-Gating Suitability

Nonvolatile Processor Architecture

Outline

Nonvolatile Logic-in-Memory Architecture Overview

NV SP-Logic: Nonvolatile-TCAM

Conclusions & Future Prospects

Nonvolatile Field-Programmable Gate Array (FPGA)

Conventional nonvolatile FPGA

How do we perform logic operation by using low swing signal from MTJ device directly?

MOS/MTJ-hybrid circuitry (Proposed)

Operation example (XOR)

Logic operation in low swing voltage is performed by using a MOS/MTJ-hybrid network.

Test chip features

D. Suzuki, et al., VLSI Circuit Symposium, June 2009.

Fabricated 2-input LUT

Process		0.14µm MTJ/MOS 1-Poly, 3-Metal	
Area		287 μm²	
MTJ Size		50nm ×150nm	
TMR Ratio		100%	
IS CSIS	Current	^{SI} 150μA ^{IS}	
vvrite	Time	10ns	
Standby Current		A0	
	MT TM Write	Area MTJ Size TMR Ratio Write Current Time	

Measured waveforms (Basic operations)

0.78V/div

50µs/div

Immediate wakeup behavior has also measured successfully.

Comparison of performances

		X	Nonvolatile SRAM *1)	Proposed		
	Device	Counts	102 MOSs + 8 MTJs	29 MOSs + 4 MTJs	CSIS	
1	Area *2)		702 μm²	287µm²		
		Delay *3)	140 ps	185 ps		
	Active	Power ^{*3)}	SIS 26.7 µW IS	17.5 μW	CSIS	
005590	Standby	Power	0 μW	0 μW		

- *1) W. Zhao, et al., Physica Status SOLIDI a Application and Materials Science, 205, 6, 1373/1377, May 2008.
 *2) Estimation based on a 0.14μm process
 *3) HSPICE simulation based on a 0.14μm MOS/MTJ-hybrid process

Outline

- Nonvolatile Logic-in-Memory Architecture Overview
- NV GP-Logic: Nonvolatile-FPGA
- Conclusions & Future Prospects

Fully parallel search and fully parallel comparison can be done.

TCAM is a "functional memory."

TCAM is the powerful data-search engine

useful for various applications such as database machine and virus checker in network router

TCAM must be implemented more compactly with lower power dissipation.

NV-TCAM Cell Function

Search Match Stored data Current input result comparison S (b_1, b_2) ML B 1 $I_{Z} < I_{Z}'$ 0 (Match) 0 (0,1) 0 1 $I_{Z} > I_{Z}'$ (Mismatch) 0 $I_Z > I_Z$ 0 (Mismatch) (1,0) 1 1 $I_{Z} < I_{Z}'$ 1 (Match) 1 $I_Z < I_Z$ 0 Χ (Match) (0,0) (don't care) 1 $I_Z < I_Z'$ 1 (Match)

CMOS-based TCAM cell circuit

MOS/MTJ-hybrid TCAM cell circuit

S. Matsunaga, et al. Applied Physics Express (APEX), 2, 2, 023004, Feb. 2009.

Merge storage into logic circuit : Compact (2T-2MTJ)
 Share wires : 4 (ML/BL, SL/WL, No-V_{DD})
 3-D stack structure : Great reduction of circuit area

Compact & nonvolatile TCAM cell with MTJ devices

Power-Gating Scheme of Bit-Serial NV-TCAM

TCAM cell circuit test chip

\leftarrow 3.0 $\mu m \rightarrow$	CSIS CSIS	CSIS Chip	features		
	Output generator	Process	0.14µm CMOS/MTJ 1-Poly, 3-Metal		
- Windowski - Wind	in MLSA	Total area	29.4 μm ²		
	TCAM Ref. cell cell	TCAM cell size	3.15 μm ² (2.1 μm × 1.5 μm) ^{a)}		
		Cell structure	2MOSs-2MTJs		
		MTJ size	50 nm × 200 nm		
	Dynamic	TMR ratio	167 %		
	current comparator in	Average write current	274 μ A ($\tau_p = 10 \ \mu$ s) ^{b)}		
	MLSA	Standby current	0A (Power off)		
	CSIS CSIS	CSIS CSIS	CSIS CSIS		

^{a)} A CMOS-based TCAM cell with 12 transistors, whose cell size is 17.54 μ m² under a 0.18 μ m CMOS process, has been reported.⁸⁾ The size of the conventional TCAM cell can be estimated as 10.61 μ m² under a 0.14 μ m CMOS process by scaling down. Thus, the size of the fabricated TCAM cell is reduced to 30 % compared to that of the conventional one. Moreover, minimum size of the proposed TCAM cell can be considered as 1/6 of the conventional one.

^{b)} More high-speed write operation is possible with increase of write current. For example, with the average current of 327 μ A at 10 ns write.

Waveforms of equality-search operations

Bit-level equality-search is successfully demonstrated.

Waveforms of sleep/wake-up operations

Instant sleep/wake-up behavior is successfully demonstrated.

Outline

- Nonvolatile Logic-in-Memory Architecture Overview
- NV GP-Logic: Nonvolatile-FPGA
- NV SP-Logic: Nonvolatile-TCAM
- Conclusions & Future Prospects
 CSIS CSIS CSIS CSIS CSIS CSIS CSIS

Conclusions

Propose a MOS/MTJ-hybrid circuit (nonvolatile logic-in-memory circuit using MTJ devices) style
 Two kinds of typical applications with logic-in-memory architecture; NV-LUT circuit and NV- TCAM
 Compact and no static power dissipation
 Confirm basic behavior with fabricated test chips under an MTJ/CMOS process.
 It could open an ultra-low-power logic-circuit paradigm

Future Prospects and Issues:

- 1. Establish the fabrication line
- 2. Establish the CAD tools
- 3. Explore the appropriate application fields
 - (Impact towards "Reliability Enhancement")