

November 3-4, 2011 Berkeley, CA, USA

Nonvolatile CMOS Circuits Using Magnetic Tunnel Junction

Hideo Ohno^{1,2}

¹Center for Spintronics Integrated Systems, Tohoku University, Japan

²Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Japan

Shoji Ikeda, Tetsuo Endoh, Takahiro Hanyu, Katsuya Miura, Naoki Kasai, Hiroyuki Yamamoto, Kotaro Mizunuma, Huadong Gan, Michihiko Yamanouchi, Hideo Sato, Ryouhei Koizumi, Jun Hayakawa, Kenchi Itoh, Fumihiro Matsukura and many others

Work supported by the FIRST program of JSPS.

http://www.csis.tohoku.ac.jp/

The FIRST Program

Funding Program for World-Leading Innovative R&D on Science and Technology (30 Programs)

Research Subject "Research and Development of **Ultra-low Power Spintronics-based VLSIs"** Hideo Ohno, Prof. of Tohoku University **Core Researcher** The Council for Science and Technology Policy **Program Planning & Selection** Japan Society for the Promotion of Science(JSPS) **Program Management & Operation** From FY 2009 through FY 2013 **Program Duration Operational Support Institution Tohoku University Participating Institutions** Tohoku University, NEC, Hitachi, ULVAC The University of Tokyo, Kyoto University

National Institute for Materials Science Renesas Electronics, Covalent Silicon

http://www.csis.tohoku.ac.jp/

Challenges Current VLSIs Face

What do we need?

CSIS

Nonvolatile memory that is

scalable fast

virtually infinite endurance back-end-of-line compatible

Features of nonvolatile for memory device	NAND	FeRAM	Spin device
Access Speed	Δ	0	0
Non destructive Read	0	Δ	0
Write Endurance	×	Δ	0
Scalability	0	Δ	0
Operation voltage	×	Δ	0

ובא כובא כובא כובא כו

Magnetic Tunnel Junction

Room temperature TMR: Miyazaki and Tezuka (Tohoku U.), J. Mag. Mag. Mat. 1995 and Moodera et al. Phys. Rev. Lett. 1995.

Magnetic Tunnel Junction Configurations

System (Memory) Hierarchy

Magnetic tunnel junction based memory element to counter dynamic and static power, and interconnection delay

H. Ohno, E. Endoh, T. Hanyu, N. Kasai, and S. Ikeda (invited) IEDM 2010

Spintronics-based CMOS VLSI

Nonvolatile Logic-in-Memory

Full adder block for image processing

Nonvolatile: ultimate power gating (no static power) Memory in the back end + part of logic (reduced # of tr. = suppression of delay and dynamic power)

Nonvolatile CAM and TCAM

Nonvolatile CAM

Technology	90 nm CMOS + DW Process	
Cell size	6.6 um²/bit	
Organization	128 word x 128 bit	
Supply voltage	1.0 V	
Search cycle time	5 ns	

Nebashi et al.

Nonvolatile TCAM

Process	90 nm 1P5M CMOS/MTJ			
Cell structure	6T-2MTJ			
MTJ size	100 nm x 200 nm			
Cell size	10.35 μm²			
Array configuration	32bits x 64words			
Match delay	0.29 ns			
Supply voltage	1.2 V			

Matsunaga et al.

VLSI Symp. 2011

Transfer curves of STT-SRAM cell

MTJ for VLSI: A wish list

- 1. Small footprint (Fnm)
- 2. High output (TMR ratio > 100%)
- 3. Nonvolatility ($\Delta = E/k_{\rm B}T > 40$)
- 4. Low switching current ($I_{C0} < F \mu A$)
- 5. Back-end-of-the-line compatibility (350 °C)
- 6. Endurance
- 7. Fast read & write
- 8. Low resistance for low voltage operation
- 9. Low error rate

10. Low cost

MTJ for VLSI: A wish list

- 1. Small footprint (Fnm)
- 2. High output (TMR ratio > 100%)
- 3. Nonvolatility ($\Delta = E/k_{\rm B}T > 40$)
- 4. Low switching current ($I_{C0} < F \mu A$)
- 5. Back-end-of-the-line compatibility (350 °C)
- 6. Endurance
- 7. Fast read & write
- 8. Low resistance for low voltage operation
- 9. Low error rate

10. Low cost

Perpendicular MgO-CoFeB MTJ

S. Ikeda et al., Nat. Mat. 9, 721 (2010), K. Miura et al., MMM 2010

MTJ for VLSI: A wish list

How small can we go?

Magnetization manipulation by

Magnetic field

write/read heads for HDD 1st generation MRAM

http://www.everspin.com/

Spin current

http://www.hitachigst.com/

L. Berger, J. Appl. Phys. **55**, 1954 (1984). J. Slonczewski, J. Magn. Magn. Mat. **159**, L1 (1996). L. Berger, Phys. Rev. B **54**, 9353 (1996).

Spin torque MRAM Spin torque oscillator Race-track memory

Electric field

scillator emory

R. Takemura *et al.*, VLSI Circ. Dig. p.84 (2009)

4Mb Array

Switching Energy

Electric-field control of magnets

Ferromagnetic transition Magnetization direction

Ferromagnetic semiconductor (In,Mn)As

Electric-field effects on CoFeB

Manipulation of magnetic anisotropy in CoFeB at room temperature

Fe/Au: T. Maruyama et al., Nature Nanotechnology (2009).

Summary

Integrating spintronics nonvolatile memory element, magnetic tunnel junction, with CMOS realizes lowpower, high performance, and stand-by power free nonvolatile VLSIs.

Magnetic tunnel junction is much better positioned now than before with 30 nm dimension and beyond in sight. Once ready this could trigger a major paradigm shift.

Electric field switching can realize ultra-low-power switching of magnetization.

Spintronics may revolutionize the way VLSIs are made today.