

Technology, Manufacturing and Markets of Magnetoresistive Random Access Memory (MRAM)

Brad Engel, VP- Product Development & Quality

Everspin – Electron Spin is Forever

Industry-first and leading MRAM supplier

- Technology leader in Toggle MRAM and ST-MRAM
- Shipped over 2.5M units with over 300 active customers to date
- > Over 15 years of design and production experience with MRAM

Break through non-volatile memory products and IP

- > 70 Products in 3 Memory Families
- Asynchronous x8, x16 and Serial SPI

600 Active Patents and Applications WW 176 Issued / 47 Pending US Patents

□ Backed by leading VC Investors (Spin-out from Freescale in June, 2008)

Global Footprint

- > Headquarters: Chandler, AZ, USA
- > Manufacturing: USA, Singapore, Thailand, China Design Center: Austin, TX, USA

Sales Offices: USA, Europe, China, Japan Design Center: Austin, TX, USA

What is MRAM Technology?

Cross-sectional view

- □ Simple 1 transistor + 1 MTJ memory cell
- Magnetic polarization stores data
- Resistance levels represent bit values compared to electron charge levels
- Highly reliable non-volatile memory
- Unlimited cycling endurance
- Low latency enabling instant on/off

low resistance

- magnetic layer 1 free layer
- tunnel barrier

magnetic layer 2 fixed layer

high resistance

MRAM - Technology Comparison

- Write accomplished by magnetic fields from current passing through bit and word lines.
- □ In volume production

- Write accomplished by spin polarized current passing through the MTJ.
- In development

Everspin MRAM Advantages

Parameter	Capability					
Non-volatile capability	Data retention of the bit cell > 20 years					
Performance	Symmetric read/write – 35ns / 40MHz Serial					
Endurance	Unlimited cycling endurance					
CMOS integration	Easily integrates into back-end process Compatible with embedded designs → No effect on CMOS Allows for flexible manufacturing					
Temperature range High Temp Storage	-40°C < T < 150°C operation demonstrated Intrinsic reliability > 20 years lifetime at 125°C					
Soft error immunity	Alpha radiation soft error rate too low to measure (<0.1 FIT per Mb) – Everspin partners offer radiation hardened MRAM					
Environmentally friendly	No battery/caps, RoHS/REACH compliant, instant-on					

How is MRAM made?

Leverage CMOS semiconductor ecosystem

- Everspin MRAM layer added to standard CMOS
- Standard packages with protective internal shield

Common standard package types

Drop in replacement fits footprints for existing printed circuit board designs

Pin for Pin functionally equivalent > BBSRAM, SPI NVM, nvSRAM and FeRAM

Memory Performance

© Everspin Technologies, Inc. 2011

Memory Performance

© Everspin Technologies, Inc. 2011

Current Toggle MRAM Products

16-bit I/O

Part Number	<u>Density</u>	Configuration	<u>Temp</u>
MR4A16B	16Mb	1M x 16	C,I,A
MR2A16A	4Mb	256K x 16	C,I,E,A
MR0A16A	1Mb	64K x 16	C,I,E,A

8-bit I/O			
Part Number	<u>Density</u>	Configuration	<u>Temp</u>
MR4A08B	16Mb	2M x 8	C,I,A
MR2A08A	4Mb	512K x 8	C,I
MR0A08B	1Mb	128K x 8	C,I
MR256A08B	256Kb	32K x 8	C,I
MR0D08B	1Mb	128K x 8, 1.8v I/O	С
MR256D08	256Kb	32K x 8, 1.8v I/O	С

<u>Density</u>	Configuration	<u>Temp</u>
4Mb	512K x 8	I, A
1Mb	128K x 8	I, A
256Kb	32K x 8	I, A
	4Mb 1Mb	4Mb512K x 81Mb128K x 8

48-BGA

- > x8 Asynchronous parallel I/O
- x16 Asynchronous parallel I/O
- x8 Asynchronous parallel 1.8V I/O

44-TSOPII, 54-TSOP

- > x8 Asynchronous parallel I/O
- x16 Asynchronous parallel I/O

8-DFN

- - SPI-compatible serial I/O
 - > 40 MHz; No write delay

32-SOIC

x8 Asynchronous parallel I/O

Temperatures	
Commercial	0 to +70 °C
Industrial	-40 to +85 ⁰C
Extended	-40 to +105 °C
Automotive	-40 to +125 ℃

MRAM Markets & Applications

Storage Systems & Servers

Industrial Automation & Robotics

Automotive & Transportation

Telecom & Datacom

Energy Management

Consumer, POS, Gaming

Logos, trademarks, images and copyright references are the property of the respective companies noted.

© Everspin Technologies, Inc. 2011

Toggle MRAM Used by Top Companies

Siemens Recognizes Everspin Technologies for Perfect MRAM Quality - May, 2009 "After two years of high volume production and more than 100K systems in the field, we are very happy with the perfect quality and reliability of Everspin's products in our industrial automation systems" http://www.semiconductor.net/article/CA6658902.html

Everspin's automotive-temperature MRAM meets harsh environment demands in BMW S1000 RR racing bike

Everspin introduces AEC-Q100 MRAM products to serve broad automotive applications; 4Mb MRAM stores critical calibration data for BMW Motorsport Super Bike

Everspin Technologies' MRAM Selected by Emerson Network Power to Deliver Critical Storage for Industrial Computing Boards

Non-volatile MRAM technology provides a robust, reliable memory solution for VME and Compact PCI boards.

Everspin Technologies to provide Airbus with MRAM products for advance wide body aircraft

Flight Control Computer on A350 XQB aircraft uses MRAM for critical program and data storage in extreme environment applications.

Logos, trademarks, images and copyright references are the property of the respective companies noted.

MRAM Writes and Reads

- Write Current Flows Down Write Line 1 & 2
- Magnetic Tunnel Junction (MTJ) At Cross-Point Is Polarized
- Polarization State Is Read By Selecting Pass Transistor to Sense Resistance of Specific MTJ

MRAM Integration

MTJ Bit Materials

MTJ Vertical Profile

TECHNOLOGIES

Ultra-thin layers require precision control for manufacturing

	Top electrode		
Turnel herrier	Cap layer		
Tunnel barrier	Free layer	CONSTRUCTIONS OF I	
	Fixed layer		
	Pinning layer		
	Bottom electrode		
			EVER

Toggle MRAM: Write Mechanism

- Toggle MRAM is a unique approach that provides both robust switching performance and manufacturability
 - > Response of synthetic antiferromagnetic free layer is the key.

Conventional MRAM Single Layer Toggle MRAM Synthetic Antiferromagnet

Toggle Write Operation

Advantages: Eliminates disturb - Large operating window

Robust Toggle-Bit Selection

Robust bit disturb margin

All bits along ½-selected current lines have increased energy barrier during programming

Toggle Switching Characteristics

Toggle-bit Array Characteristics

Write Operating Region at 125 °C

□ Large write window at Automotive temperatures

Read Sense Amplifier

 $I_{\rm Ref} = (I_{\rm High} + I_{\rm Low})/2$

Local references created from two MTJ: one high and one low resistance state

Magnetoresistance and Distributions

 $MR = \Delta R/R_{low} , \Delta R = R_{high} - R_{low}$

- $\Box Signal = R_{cell} R_{ref}$
- > $\frac{1}{2}$ of ΔR available for sensing

Circuit works at finite bias

MR is reduced by bias dependence of MR

Must sense all bits in the array

Circuit must work with bits in tails of the R distribution

Resistance distribution reduces useable MR.

For six-sigma yield in the array, need: $\Delta R/2 > 6\sigma$

Array: R_{cell} Histogram

Cell Resistance (k Ω)

Read Distribution within an Array

MTJ Deposition on 200mm Wafers

Measured uniformity—200 mm

	$MR=45\%, \sigma=2\%$							RA=10.4 kΩ- μ m ² , σ=6%			6%				
	43.9	44.5	44.6	44.8	44.5	43.1			11.3	11.0	10.5	10.5	10.9	12.3	
44.4	45.0	45.2	46.0	45.8	46.0	44.6	43.1	11.7	10.3	9.74	9.88	9.65	9.80	10.2	11.5
44.1	45.4	42.9	45.6		45.6	45.8	44.5	10.3	9.54	10.9	10.6		10.3	9.74	10.5
44.5	46.1	44.3	45.1	45.5	45.8	46.0	45.0	10.1	9.68	10.4	10.8	10.8	10.7	9.85	10.7
44.5	45.8	43.4	45.4	45.9	45.7	45.9	44.7		9.80	10.9	10.5	10.8	10.5	9.86	10.2
44.2	45.3	45.7	45.5	43.9	45.8	45.4	44.0	10.3	9.45	10.1	10.4	10.6	9.87	9.62	10.9
	44.1	45.3	45.9	45.6	45.0	44.7			10.2	9.52	9.43	9.56	9.59	10.2	
		43.4	44.0	44.8	44.1					11.2	10.2	10.4	11.0		

Manufacturable wafer level uniformity and wafer-to-wafer repeatabilityoptimization of deposition tool, process, and material stack

Toggle MRAM High Reliability

Predicted lifetime from accelerated testing Robust reliability at Automotive temperatures

Summary

MRAM is a highly reliable, high-performance, nonvolatile memory IC, with unlimited endurance

Has the unique characteristics of a working memory while providing non-volatility

Current MRAM products are used in a wide variety of applications

 Data Storage, Industrial Control, Medical Systems, Transportation, Metering and Gaming

Everspin Continues MRAM leadership:

- Expanding MRAM into new markets and applications
- On track to deliver the industry's first ST-MRAM