SEMATECH 8th International Symposium on Advanced Gate Stack Technology, Session 4: Spin Transfer Torque Memory Bolton Landing, NY 20, October 2011

http://www.csis.tohoku.ac.jp

Advanced magnetic tunnel junctions based on CoFeB/MgO interfacial perpendicular anisotropy

S. Ikeda^{1,2}

M. Yamanouchi¹, H. Sato¹, K. Miura^{3,1,2}, K. Mizunuma², H. Yamamoto³, R. Koizumi², H. D. Gan¹, S. Kanai², J. Hayakawa³, F. Matsukura^{1,2}, H. Ohno^{1,2}

¹ Center for Spintronics Integrated Systems (CSIS), Tohoku Univ.
² Laboratory for Nanoelectronics and Spintronics, RIEC, Tohoku Univ.
³ Central Research Laboratory, Hitachi, Ltd.

<u>Acknowledgement:</u> This work was supported by the project "Research and Development of Ultra-low Power Spintronics-based VLSIs" under the FIRST Program of JSPS.

 Logic-in-memory architecture
Reduction of leak current (static power)
Reduction of interconnection delay

Mochizuki *et al.*, IEICE Transactions on Fundamentals, E88-A (2005) 1408. Matsunaga *et al.*, Appl. Phys. Express, 1 (2008) 091301; *ibid.*, 2 (2009) 023004. Sekikawa et al., IEDM 2008, Suzuki et al., VLSI Technology 2009 Ohno et al., IEDM 2010

Matsunaga *et al.* VLSI Circuit 2011

Nonvolatile circuits for logic-in-memory

Matsunaga, ...Hanyu *et al.*, Appl. Phys. Express 1 (2008) 091301.

MTJ-Based Nonvolatile Lookup-Table Circuit Chip Suzuki, ...Hanyu, *et al.*, VLSI Circuit Symposium 2009.

MTJ-Based Nonvolatile Ternary Content-Addressable Memory (TCAM) cell

Matsunaga, ... Hanyu *et al*., Appl. Phys. Express 2 (2009) 023004.

2kb-nonvolatile TCAM chip

Matsunaga, ...Hanyu,*et al.*, VLSI Circuit Symposium 2011.

Technology issues toward realization of nonvolatile VLISs

To realize nonvolatile VLISs (MRAM and logic-in-memory) using the leading edge technology node, there are still issues to be addressed.

ISSUES

- High output (TMR ratio>100%)
- Low switching current $(I_{\rm C} < F \mu A)$
- Thermal stability for nonvolatility $(E/k_B T > 40)$
- Annealing stability in back-end-of-line process (T_a > 350°C)
- MTJs have to satisfy these requirements with scalability at the same time.
- In order to satisfy these requirements, we focus on the MTJs with perpendicular anisotropy electrodes.

+ Scalability

M-H curves of CoFeB/MgO stack samples with different t_{CoFeB}

•The CoFeB/MgO interfacial anisotropy K_i is dominant in the perpendicular anisotropy because K_b is negligible.

t_{MgO} dependence of M_s and K

Saturation magnetization M_s and effective magnetic anisotropy energy density K are evaluated from the out-of-plane M-H curves.

More than 3 monolayers of MgO is required to stabilize the perpendicular anisotropy induced by CoFeB-MgO interface.

M. Yamanouchi et al., J. Appl. Phys. 109 (2011) 07C712.

Possible factor of the perpendicular anisotropy in CoFeB/ MgO stack

TMR properties in CoFeB-MgO p-MTJs

S. Ikeda et al., Nat. Mat. 9 (2010) 721.

H. Sato et al., Appl. Phys. Lett. 99 (2011) 042501.

Junction size dependence of $E/k_{\rm B}T$

 $E/k_{\rm B}T$ maintained almost constant values even though the junction diameter was varied from 40 nm to 80.

 I_{C0} reduces in proportion to the volume of the recording layer but the $E/k_{\rm B}T$ values are not affected much by the volume down to 40 nm in diameter.

 D_n showed almost constant values of 40 nm in diameter, which is almost independent of junction size.

 $I_{C0} = J_{C0} S = J_{C0} (\pi (D^2 - D_n^2)/4) + \pi (D_n/2)^2) \propto S$ $E/k_B T = K_{eff} \pi (D_n/2)^2 / k_B T \propto D_n^2$

J_{c0} and $E/k_{B}T$ of MTJs with 40 nm diameter

•This MTJ system has a back end of the line (BEOL) compatibility.

S. Ikeda *et al.*, Nat. Mat. 9, (2010) 721. K. Miura *et al.*, MMM 2010, HC-02. 15

Comparison of MTJs

Туре	Stack structure (nm)	Size (nm)	MR (%)	RA (Ωμm²)	J _{C0} (MA/cm²)	Ι _{co} (μΑ)	Δ=E/k _B T	I _{C0} /Δ	T _a (°C)	Ref.
i-MTJ	CoFeB(2)/Ru(0.65)/CoF eB(1.8) SyF	100x200	>130	~10	2	~400	65	~6.2	300- 350	J. Hayakawa et al., IEEE T-Magn., 44, 1962 (2008)
p-MTJ	L10- FePt(10)/Fe(t)/Mg(0.4)/ MgO(1.5)/L10-FePt(t)	Blanket	120 (CIPT)	11.8k	<u> </u>			\sum	500	M. Yoshizawa et al., IEEE T-Magn., 44, 2573 (2008)
p-MTJ	L10- FePt/CoFeB/MgO(1.5)/ CoFeB/Co based superlattice	Blanket	202 (CIPT)	CSI	<u>s</u> c	<u>ISIS</u>	CS	IS	CSIS	H. Yoda et al., Magnetics Jpn. 5, 184 (2010) [in Japanese].
p-MTJ	[Co/Pt]CoFeB/CoFe/Mg OCoFe/CoFeB/TbFeCo	Blanket	85-97 (CIPT)	4.4-10	-		-	-	225	K. Yakushiji et al., APEX 3, 053033 (2010)
p-MTJ	[CoFe/Pd]/CoFeB/MgO/ CoFeB/[CoFe/Pd]	800x800 N	100 (113)	18.7k (20.2k)	<u> </u>				350 (325)	K. Mizunuma et al., MMM&INTERMAG2010
p-MTJ	CoFeB (1)/ TbCoFe (3)	130 φ	~15	CSI	4.7	650	107	6.08	CSIS	M. Nakayama et al., APL 103, 07A710 (2008)
p-MTJ	L1 ₀ -alloy	50-55 φ			X (49	56	0.88		T. Kishi et al., IEDM 2008
p-MTJ	Fe based L1 ₀ (2)/CoFeB (0.5)				-	9			R	H.Yoda et al., Magnetics Jpn. 5, 184 (2010) [in Japanese].
<mark>С</mark> S p-MTJ	CoFeB/MgO/ CoFeB	40 φ	113 (124)	16 (18)	3.8 (3.9)	48 (49)	39 (43)	1.23 (1.14)	350 (300)	S. Ikeda et al., Nat. Mat. 9 (2010) 721. K. Miura et al., MMM2010,HC-02

These p-MTJ technologies will be a promising building block for nonvolatile VLSIs using spin-transfer torque switching.

K. Miura et al., 2011 VLSI Technology, 11B-3.

	Conventional structure	Stepped structure			
TMR ratio (%)	100	97			
<i>RA</i> (Ωμm²)	CSIS C135 CSIS	CSIS 13 IS CSI			
H _s (mT)	22	5			

 $H_{\rm s}$ can be reduced by using stepped structure.

K. Miura et al., VLSI Technology 2011, 11B-3.

K. Miura et al., VLSI Technology 2011, 11B-3.

Cell area of 0.09 μ m² (300nm ϕ) in the stepped structure corresponds to SRAM cell area at 32 nm technology node.

Cell area can be down to 0.04 μm² (200nmφ) without degrading the retention time over 10 years, which corresponds to SRAM cell area at 20 nm technology node. K. Miura et al., VLSI Technology 2011, 11B-3.

Summary

- We have demonstrated that the critical current I_{c0} in CoFeB/MgO perpendicular anisotropy MTJs (p-MTJs) can be scaled down with decreasing recording layer volume.
- The thermal stability factor $E/k_{\rm B}T$ can be maintained at about 40 even though the recording volume was reduced to 40 nm. The magnetization reversal in CoFeB/MgO p-MTJs is dominated by nucleation type magnetization reversal (nucleation diameter ~40 nm).
- CoFeB/MgO p-MTJs show the high TMR ratio of more than 100%, high thermal stability at dimension as low as 40 nm diameter and a low switching current of 49 µA at the same time.
- CoFeB/MgO p-MTJ with step structure shows the enhancement of thermal stability in antiparallel state, which achieves thermal stability for data retention time over 10 years.